description:
đ
Approach#
âšī¸ warning
We weren’t able to solve this during the CTF
p = 108159532265181242371960862176089900437183046655107822712736597793129430067645352619047923366465213553080964155205008757015024406041606723580700542617009651237415277095236385696694741342539811786180063943404300498027896890240121098409649537982185247548732754713793214557909539077228488668731016501718242238229
A = 60804426023059829529243916100868813693528686280274100232668009387292986893221484159514697867975996653561494260686110180269479231384753818873838897508257692444056934156009244570713404772622837916262561177765724587140931364577707149626116683828625211736898598854127868638686640564102372517526588283709560663960
ciphertext = '9fb749ef7467a5aff04ec5c751e7dceca4f3386987f252a2fc14a8970ff097a81fcb1a8fbe173465eecb74fb1a843383'
so basically the encryption algorithm is using an AES cipher using s
as the key, and given p
and A
we have to get the value of s
u = 0
for i in range(p):
u += p - i
u *= s
u %= p
this is the algorithm used to generate A
that we have to crack
this gives us something like the series which is an AGP
solving this AGP gave me
at this point I was stumped because I had no idea how to solve for with the term in the expression, I remembered seeing a considerably simpler expression in the WaniCTF discord which motivated me to try further
I searched for
and was guided to “Fermat’s Little Theorem” which states that
this means that I can neglect the first term in my AGP expression giving me finally
which I can rearrange for s as
now I have which gives me and I also have the iv
, now I can decrypt the AES cipher
I still stumbled with the python code and took help from some writeups though
from Crypto.Cipher import AES
from Crypto.Util.number import *
from hashlib import md5
p = 108159532265181242371960862176089900437183046655107822712736597793129430067645352619047923366465213553080964155205008757015024406041606723580700542617009651237415277095236385696694741342539811786180063943404300498027896890240121098409649537982185247548732754713793214557909539077228488668731016501718242238229
A = 60804426023059829529243916100868813693528686280274100232668009387292986893221484159514697867975996653561494260686110180269479231384753818873838897508257692444056934156009244570713404772622837916262561177765724587140931364577707149626116683828625211736898598854127868638686640564102372517526588283709560663960
ciphertext = '9fb749ef7467a5aff04ec5c751e7dceca4f3386987f252a2fc14a8970ff097a81fcb1a8fbe173465eecb74fb1a843383'
s = (A) * pow(1 + A, -1, p) % p
def decrypt(c: bytes, key: int) -> bytes:
iv = c[:16]
ciphertext = c[16:]
key = long_to_bytes(key)
key = md5(key).digest()
cipher = AES.new(key, AES.MODE_CBC, iv=iv)
decrypted = cipher.decrypt(ciphertext)
return decrypted
m = decrypt(bytes.fromhex(ciphertext), s)
print(m)
Flag#
Flag: FLAG{Do_the_math396691ba7d7270a}