Simple linear regression (SLR)
- 5 Steps in Econometric Analysis: Hypothesis, Model Specification, Estimation, Verification / Statistical Inference / Statistical Tests of Hypothesis, Forecasting and Policy
- Population regression function and sample regression function; Estimator vs Estimate; Desirable properties of Estimators (Small sample properties - Unbiasedness, Efficiency, MVUE, Linearity, Mean Squared Error vs Large sample properties - Asymptotic Unbiasedness, Consistency)
- Data collection - Observational data vs experimental data; Role of random sampling assumption;
- 4 Assumptions for Estimation (also known as Gauss-Markov Assumptions)
- Estimation using Ordinary Least Squares (OLS) Approach
- Properties of OLS regression line
- Properties of OLS estimators (OLS estimators are BLUE); also known as the Gauss-Markov Theorem (when Gauss-Markov Assumptions are valid)
- https://www.youtube.com/watch?v=vOBtEiij-fA&list=PLwJRxp3blEvZyQBTTOMFRP_TDaSdjjly3gU&index=14&pp=iAQB
-
14
⇒20
- Statistical Inference in SLR
- Hypothesis testing basics - Basic intuition (Null Vs Alternative); Type of errors in statistical decision making (Type I vs Type II); sampling distribution of an estimator; statistic; critical values; Chi-squared, t and F tests; Confidence Interval approach to hypothesis testing
- https://www.youtube.com/watch?v=_dULun-EpX0&list=PLwJRxp3blEvZyQBTTOMFRP_TDaSdly3gU&index=88
-
88
⇒95
- https://www.youtube.com/watch?v=ie-MYQp1Nic&list=PLwJRxp3blEvZyQBTTOMFRP_TDaSdly3gU&index=105&pp=iAQB
-
105
⇒113
- https://www.youtube.com/watch?v=MFqWrhWQgXo&list=PLwJRxp3blEvZyQBTTOMFRP_TDaSdly3gU&index=114&pp=iAQB
-
114
- Hypothesis testing basics - Basic intuition (Null Vs Alternative); Type of errors in statistical decision making (Type I vs Type II); sampling distribution of an estimator; statistic; critical values; Chi-squared, t and F tests; Confidence Interval approach to hypothesis testing
- Measuring Goodness of fit (Coefficient of determination; R-squared or R^2 in SLR and their relationship; One-way ANOVA); Relationship between R^2 and F-statistic and t-statistic
- OLS without intercept term; interpretation; OLS with change of origin and scale (Tutorial)
Relaxation of the Gauss-Markov Assumptions
- E(u) = 0 and its implications:
- Heteroskedasticity: Causes, Examples, Consequences, Detection (Visual vs Statistical Tests - Goldfeld-Quandt and White tests), Remedies (TBD)
- https://www.youtube.com/watch?v=zRklTsY9w9c&list=PLwJRxp3blEvZyQBTTOMFRP_TDaSdly3gU&index=54&pp=iAQB
-
54
⇒57
- https://www.youtube.com/watch?v=yb4CIJzftjc&list=PLwJRxp3blEvZyQBTTOMFRP_TDaSdly3gU&index=115&pp=iAQB
-
115
- https://www.youtube.com/watch?v=M5xqpKzhyAM&list=PLwJRxp3blEvZyQBTTOMFRP_TDaSdly3gU&index=117&pp=iAQB
-
117
- https://www.youtube.com/watch?v=wCJ8I-MtJdQ&list=PLwJRxp3blEvZyQBTTOMFRP_TDaSdly3gU&index=128&pp=iAQB
-
128
⇒132
k
- Autocorrelation / Serial-correlation: Causes, Examples, Consequences, Detection (Visual vs Statistical Tests - Durbin-Watson Test)
- summary of errors